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ABSTRACT 
 
Thyroid hormone (TH) effects are dependent on the 
quantity of the hormone that reaches the tissues, 
hormone activation, and the availability of unaltered 
TH receptors in the cell’s nuclei and cytoplasm. Since 
TH enters the cell unbound, the concentration of free 
rather than total hormone reflects more accurately the 
activity level of TH-dependent processes. Under 
normal conditions, changes in free hormone level are 
adjusted by appropriate stimulation or suppression of 
hormone secretion and disposal. Total TH 
concentration in serum is normally kept at a level 
proportional to the concentration of carrier proteins, 
and appropriate to maintain a constant free hormone 
level.   
 
INTRODUCTION 
 
Most carrier protein dependent alterations in total 
hormone concentration in serum are due to 
quantitative changes in the hormone-binding proteins 
and less commonly to changes in affinities for the 
hormone.  Since wide fluctuations in the concentration 
of TH carrier proteins does not alter the hormonal 
economy or metabolic status of the subject (1), their 
function is open to speculation.  They are responsible 
for the maintenance of a large extrathyroidal pool of 
TH of which only the minute, <0.5 % fraction of free 
hormone is immediately available to tissues.  It can be 
estimated that in the absence of binding proteins the 

small extrathyroidal T4 pool would be significantly 
reduced, if not completely depleted in a matter of 
hours following a sudden cessation of hormone 
secretion.  In contrast, in the presence of normal 
concentrations of T4-binding serum proteins, and in 
particular thyroxine-binding globulin (TBG), a 24-h 
arrest in hormonal secretion would bring about a 
decrease in the concentration of T4 and T3 in the order 
of only 10 and 40 per cent, respectively.  Thus, it 
seems logical to assume that one of the functions of 
T4-binding proteins in serum is to safeguard the body 
from the effects of abrupt fluctuations in hormonal 
secretion.  The second likely function of T4-binding 
serum proteins is to serve as an additional protection 
against iodine wastage by imparting macromolecular 
properties to the small iodothyronine molecules, thus 
limiting their urinary loss (2).  The lack of high affinity 
T4-binding proteins in fish (3), for example, may be 
teleologically attributed to the greater iodine 
abundance in their natural habitat.  Liver perfusion 
studies suggest a third function, that facilitating the 
uniform cellular distribution of T4, allowing for changes 
in the circulating thyroid hormone level to be rapidly 
communicated to all cells within organ tissues (4).  A 
fourth function, modeled after the corticosteroid-
binding globulin (5), is targeting the amount of 
hormone delivery by site specific, enzymatic, 
alteration of TBG.  Indeed neutrophil derived elastase 
transforms TBG into a heat resistant, relaxed, form 
with reduced T4-binding affinity (6).  TBG was found 
to have a putative role on the testicular size of the 
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boar.  In fact, Meishan pigs with histidine rather than 
an asparagine in codon 226 have a TBG with lower 
affinity for T4, smaller testes and earlier onset of 
puberty (7, 8).  
 
In normal man, approximately 0.03 per cent of the total 
serum T4, and 0.3 per cent of the total serum T3 are 
present in free or unbound form (3, 9).  The major 
serum thyroid hormone-binding proteins are thyroxine-
binding globulin [TBG or thyropexin], transthyretin 
[TTR or thyroxine-binding prealbumin (TBPA)], and 
albumin (HSA, human serum albumin) (10).  Several 
other serum proteins, in particular high density 
lipoproteins, bind T4 and T3 as well as rT3 (9, 11) but 
their contribution to the overall hormone transport is 
negligible in both physiological and pathological 
situations.  In term of their relative abundance in 
serum, HSA is present at approximately 100-fold the 
molar concentration of TTR and 2,000-fold that of 
TBG.  However, from the view point of the association 
constants for T4, TBG has highest affinity, which is 50-

fold higher than that of TTR and 7,000-fold higher that 
of HSA.  As a result, TBG binds 75% of serum T4, 
while TTR and HSA binds only 20% and 5%, 
respectively (Table 1).  The distribution of the 
iodothyronine metabolites among the three serum 
binding proteins is distinct (12). According to their 
affinity, T4 > tetraiodothyroacetic acid (TETRAC or 
T4A) = 3,3’,5’-triiodothyronine (reverse T3 or rT3) > T3 
> triiodothyroacetic acid (TRIAC or T3A) = 3,3’-
diiodothyronine (T2) > 3-monoipdothyronine (T1) = 
3,5-T2 > thyronine (T0) for TBG (IC50-range: 0.36 nM 
to >100 lM) and T4A > T4 = T3A > rT3>T3 > 3,3’-T2 > 
3-T1 > 3,5-T2 > T0 for transthyretin (IC50-range: 0.94 
nM to >100 lM).  TBG, transthyretin, and albumin were 
not associated with T0, 3-T1, 3,3-T2, rT3, and T4A.  
From evolutionary point of view, the three 
iodothyronine-binding serum proteins developed in 
reverse order of their affinity for T4, HSA being the 
oldest (13). 
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Table 1. Some Properties and Metabolic Parameters of the Principal TH-Binding Proteins in 
Serum 
 TBG TTR HSA 
Molecular weight (K daltons) 54* 55 66.5 
Structure Monomer Tetramer Monomer 
Carbohydrate content (%) 20   
Number of binding sites for T4 and T3 1 2 4 

Association constant, Ka (M-1)    

       For T4 1 x 1010 2 x 108** 1.5 x 106** 
       For T3 1 x 109 1 x 106 2 x 105 
Concentration in serum    
         (mean normal, mg/liter) 16 250 40,000 
Relative distribution of T4 and T3 in serum (%)    

       For T4 75 20 5 

       For T3 75 <5 20 

In-Vivo Survival    
Half-life (days) 5*** 2 15 
Degradation rate (mg/day) 15 650 17,000 

 *Apparent molecular weight on acrylamide gel electrophoresis 60 K daltons. 
 **Value given is for the high affinity binding site only. 
***Longer under the influence of estrogen. 
 
The existence of inherited TH-binding protein 
abnormalities was recognized 1959, with the report of 
a family with TBG-excess (14) but it took 30 years 
before the first mutation in the TBG (serine protease 
inhibitor, SERPIN A7) gene was identified (15).  
Genetic variants of TH-binding proteins having 
different capacity or affinity for their ligands than the 
common type protein result in euthyroid hyper- or 
hypo-iodothyroninemia.  The techniques of molecular 
biology have traced these abnormalities to 
polymorphisms or mutations in genes encoding TBG 
and TTR and HSA (see Chapter on Defects of Thyroid 
Hormone Transport in Serum). 

 
THYROXINE-BINDING GLOBULIN (TBG) 
 
The Molecule, Structure and Physical Properties   
 
TBG is a 54 kD acidic glycoprotein migrating in the 
inter-α-globulin zone on conventional electrophoresis, 
at pH 8.6.  The term, thyroxine-binding globulin, is a 
misnomer since the molecule also binds T3 and 
reverse T3.  It was first recognized to serve as the 
major thyroid hormone transport protein in serum in 
1952 (16).  Since TBG binds 75% of serum T4 and T3, 
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quantitative and qualitative abnormalities of this 
protein have most profound effects on the total 
iodothyronine levels in serum.  Its primary structure 
was deduced in 1989 from the nucleotide sequence of 

a partial TBG cDNA and an overlapping genomic DNA 
clones (17).  However, it took 17 years to characterize 
its three dimensional structure by crystallographic 
analysis (18) (Fig. 1). 

 

 
Figure 1. Structure of the TBG molecule: Reactive loop (in yellow). Insertion occurs following its cleavage 
by proteases to give an extra strand in the main sheet of the molecule but the T4-binding site can still 
retain its active conformation. This is in keeping with other findings showing that the binding and release 
of T4 is not due to a switch from an on to an off conformation but rather results from an equilibrated 
change in plasticity of the binding site. So, the S-to-R change in TBG results in a 6 -fold decrease but 
not a total loss of affinity.  The important corollary is that that the release of thyroxine is a modulated 
process as notably seen in response to changes in temperature (19). (Courtesy of Dr, R.W. Carrell), 
 
TBG is synthesized in the liver as single polypeptide 
chain of 415 amino acids.  The mature molecule, 
minus the signal peptide, is composed of 395 amino 
acids (44 kD) and four heterosaccharide units with 5 
to 9 terminal sialic acids.  The carbohydrate chains are 

not required for hormone binding but are important for 
the correct post-translational folding and secretion of 
the molecule (20, 21) and are responsible for the 
multiple TBG isoforms (microheterogeneity) present 
on isoelectric focusing (22, 23).  The isoelectric point 
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of normal TBG ranges from pH 4.2 to 4.6, however, 
this increases to 6 when all sialic acid residues are 
removed.  
 
The protein is very stable when stored in serum, but 
rapidly loses its hormone binding properties by 
denaturation at temperatures above 55°C and pH 
below 4.  The half-life of denaturation at 60°C is 
approximately 7 min but association with T4 increases 
the stability of TBG (24-26).  TBG can be measured by 
immunometric techniques or saturation analysis using 
one of its iodothyronine ligands (26-28). 
 
The tertiary structure of TBG was solved by co-
crystallizing the in-vitro synthesized non-glycosylated 
molecule with T4 and speculations regarding the 
properties of TBG and its variants have been 
confirmed (18, 19). The molecule caries T4 in a 
surface pocket held by a series of hydrophobic 
interactions with underlying residues and hydrogen 
bonding of the aminoproprionate of T4 with adjacent 
residues (Figure 1). TBG differs from other members 
of the SERPIN family in having the upper half of the 
main ß-sheet completely opened. This allows the 
reactive center peptide loop to move in and out of the 
sheet, resulting in binding and release of the ligand 
without cleavage of TBG. Thus the molecule can 

assume a high-affinity and a low-affinity conformation, 
a model proposed earlier by Grasberger et al (29) and 
confirmed crystallographically (18). This reversibility is 
due to the unique presence of P8 proline in TBG, 
rather than a threonine in all other SERPINs, limiting 
loop insertion.  The coordinated movements of the 
reactive loop, hD, and the hormone-binding site allow 
the allosteric regulation of hormone release. 
 
Gene Structure and Transcriptional Regulation  
 
The molecule is encoded by a single gene copy 
located in the long arm of the human X-chromosome 
(Xq22.2) (30, 31).  The gene consists of 5 exons 
spanning 5.5kbp (Fig. 2).  The first exon is a small and 
non-coding.  It is preceded by a TATAA box and a 
sequence of 177 nucleotides containing an hepatocyte 
transcription factor-1 (HNF-1) binding motif that 
imparts to the gene a strong liver specific 
transcriptional activity (32).  The numbers and size of 
exons, their boundaries and types of intron splice 
junctions as well as the amino acid sequences they 
encode are similar to those of other members of the 
SERPIN family, to which TBG belongs (32).  These 
include cortisol-binding globulin and the serine 
protease inhibitors, α1-antitrypsin (α1AT) and α1-
antichymotrypsin (α1ACT). 
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Figure 2. A. Genomic organization and chromosomal localization of thyroid hormone serum binding 
proteins. Filled boxes represent exons. Location of initiation codons and termination codons are 
indicated by arrows.  B. Structure of promoter regions with the location of cis-acting transcriptional 
regulatory elements.  Reproduced with permission from Hayashi and Refetoff, Molecular Endocrinology: 
Basic concepts and clinical correlations, Raven Press Ltd. 1995. 
 
Biological Properties  
 
The TBG molecule has a single iodothyronine binding 
site with affinity slightly higher for T4 than for T3 (33) 
(Table 1).  Optimal binding activity requires the 
presence of the L-alanine side chain, an unsubstituted 
4'-hydroxyl group, a diphenyl ether bridge, and 
halogen (I or Br) constituents at the 3,5,3' and 5' 
positions (34).  Compared to L-T4, 3,3’,5’-
triiodothyronine (rT3) binds to TBG with ~40% higher 
affinity, D-T4 with half that of the L-isomer and 

tetraiodothyroacetic acid with ~25%.  A number of 
organic compounds compete with thyroid hormone-
binding to TBG.  Most notable are: 
5,5-diphenylhydantoin (35), 1,8-
anilinonaphthalenesulfonic acid, and salicylates (36).  
While reversible flip-flop conformational changes of 
TBG allow for binding and release of the hormone 
ligand, cleavage of the molecule by leukocyte elastase 
produces a permanent change in the properties of the 
molecule.  This modified form has reduced T4-binding 
and increased heat stability (6). 
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Denatured TBG does not bind iodothyronines but can 
be detected with antibodies that recognize the primary 
structure of the molecule (26).  In euthyroid adults with 
normal TBG concentration, about one-third of the 
molecules carry thyroid hormone, mainly T4.  When 
fully saturated, it carries about 20 µg of T4/dl of serum.  
The biologic half-life is about 5 days, and the volume 
of distribution is similar to that of albumin (37, 38) 
(Table 1).  TBG is cleared by the liver.  Loss of sialic 
acid accelerates its removal through interaction with 
the asialo-glycoprotein receptors reducing the half live 
by 500-fold (24).  However, it is unknown whether 
desialylation is a required in the normal pathway of 
TBG metabolism. 
 
Physiology  
 
TBG concentration in the serum of normal adults 
ranges from 1.1 to 2.1 mg/dl (180 - 350 nM), 14 - 26 
µg T4/dl in terms of maximal T4-binding capacity.   The 
protein is present in serum of the 12th week old fetus 
and in the newborn until 2-3 years of age it is about 
1.5 times the normal adult concentration (39-41).  TBG 
levels decline slightly reaching a nadir during mid-
adulthood and tend to rise with further advance in age 
(42).  Variable amounts of TBG, though much smaller 
than those in serum, have been detected in amniotic 
fluid (43), cerebrospinal fluid (44) and urine (45). 
 
Estrogen excess, either from an endogenous source 
(hydatidiform mole, estrogen-producing tumors, etc.) 
or exogenous (therapeutic or birth control use) is the 
most common cause of increased serum TBG 
concentration.  The level of several other serum 
proteins such as corticosteroid-binding globulin, 
testosterone-binding globulin, ceruloplasmin, and 
transferrin, are also increased (46).  This effect of 
estrogen is mediated through an increase in the 
complexity of the oligosaccharide residues in TBG 
together with an increase in the number of sialic acids 

resulting in prolonged biological half-life (47, 48).  
Androgens and anabolic steroids produce an opposite 
effect (49, 50).  Although sex hormones affect the 
serum level of TBG, gender differences are small 
except during pregnancy during which concentrations 
are on the average 2.5-fold the normal value (28, 51).  
Extreme changes in TBG concentration (low or high) 
alters the accuracy of immunometric measurements of 
free iodothyronines and particularly that of T3 (52). 
 
Acquired TBG Abnormalities  
 
Altered synthesis, degradation, or both are 
responsible for the majority of acquired TBG 
abnormalities (38).  Severe terminal illness is 
undoubtedly the most common cause for acquired 
decrease in TBG concentration.  Interleukin-6, a 
stimulator of acute phase reactants, is a candidate for 
mediation of this effect (53).  In vivo studies in man 
showed a reduction in the turnover of TBG in 
hypothyroidism and an increase in hyperthyroidism 
(37, 38).  Thus, alterations in the degradation rate, 
rather than changes in the rate of synthesis, may be 
responsible for the changes of TBG concentration 
observed in these two conditions. 
 
Partially desialylated TBG, has slow electrophoretic 
mobility (sTBG, not to be confused with the variant 
TBG-S), and was found in the serum of some patients 
with severe liver disease (54) and may be present in 
relatively higher proportion than TBG in serum of 
patients with a variety of non-thyroidal illnesses and 
particularly those with compromised hepatocellular 
function (55).  This is not surprising considering that 
sTBG is removed by the asialoglycoprotein receptors 
present in abundance on liver cells (24, 56). 
 
Patients with the carbohydrate-deficient glycoprotein 
(CDG) syndrome show a characteristic cathodal shift 
in the relative proportion of TBG isoforms compatible 
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with diminished sialic acid content (57).  This inherited 
syndrome presenting psychomotor retardation, 
cerebellar hypoplasia, peripheral sensorimotor 
neuropathy, and variably, retinitis pigmentosa, skeletal 
abnormalities and lipodystrophy (58), manifests also 
abnormalities of charge and mass in a variety of serum 
glycoproteins (59). 
 

TRANSTHYRETIN (TTR) 
 
The Molecule, Structure and Physical Properties   
 
TTR is a 55kD homotetramer which is highly acidic 
although it contains no carbohydrate.  Formerly known 
as thyroxine-binding prealbumin (TBPA), for its 
electrophoretic mobility anodal to albumin, was first 
recognized to bind T4 in 1958 (60).  Subsequently it 
was demonstrated that TTR also forms a complex with 
retinol-binding protein and thus plays a role in the 
transport of vitamin A (retinol, or trans retinoic acid) 
(61, 62). 

 
TTR circulates in blood as a stable tetramer of 
identical subunits, each containing 127 amino acids 
(63).  Although the tetrameric structure of the molecule 
was demonstrated by genetic studies (64, 65), 
detailed structural analysis is available through X-ray 
crystallography (66, 67) (Fig. 3).  Each TTR subunit 
has 8 ß-strands four of which form the inner sheet and 
four the outer sheet.  The four subunits form a 
symmetrical ß-barrel structure with a double 
trumpeted hydrophobic channel that traverses the 
molecule forming the two iodothyronine binding sites.  
Despite the apparent identity of the two iodothyronine 
binding sites, TTR usually binds only one T4 molecule 
because the binding affinity of the second site is 
greatly reduced through a negative cooperative effect 
(69).  The TTR tetramer can bind four molecules of 
RBP that do not interfere with T4-binding, and vice 
versa (70).  TTR can be measured by densitometry 
after its separation from the other serum proteins by 
electrophoresis, by hormone saturation, and by 
immunoassays. 
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Figure 3. X-ray structure of TTR. The molecule is a homotetrameric protein composed of four monomers 
of 127 amino acids. Structurally, in its native state, TTR contains eight stands (A-H) and a small α-helix. 
The contacts between the dimers form two hydrophobic pockets where T4 binds (T4 channel). As shown 
in the magnified insert, each monomer contains one small α-helix and eight β-strands (CBEF and DAGH). 
Adapted from a model; PDB code 1DVQ (68). 
 
Gene Structure and Transcriptional Regulation   
 
TTR is encoded by a single gene copy located on 
human chromosome 18 (18q11.2-12.1) (63, 71) (Fig. 
2).  The gene consists of 4 exons spanning for 6.8kbp.  
Knowledge about the transcriptional regulation of the 
human TTR gene comes from studies of the mouse 
gene structural and sequence homology which 

extends to the promoter region (72, 73).  In both 
species a TATAA box and binding sites for HNF-1, 3 
and 4 are located within 150 bp from the transcription 
start site. 
 
Although TTR in serum originates from the liver (74), 
TTR mRNA is also found in kidney cells, the choroid 
plexus, meninges, retina, placenta, pancreatic islet 
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cells and fetal intestine (75-78).  TTR constitutes up to 
25% of the total protein present in ventricular 
cerebrospinal fluid where it binds 80% of T4 (79). 

 
Biological Properties  
 
Despite the 20-fold higher concentration of TTR in 
serum relative to that of TBG, it plays a lesser role in 
iodothyronine transport.  In the presence of normal 
levels of TBG, wide fluctuations in TTR concentration 
or its removal from serum by specific antibodies has 
little influence on the concentration of free T4 (80).  
Some of the properties of TTR are summarized in 
Table 1. 
 
The first T4 molecule binds to TTR with a Ka of about 
100-fold higher than that for HSA and about 100-fold 
lesser than that for TBG.  Properties necessary for 
optimal binding activity include iodines at the 3' and 5' 
positions and a desamino acid side chain which 
explain the lower T3 and higher T4A  affinities relative 
to that of T4 (34, 81).  Non-iodothyronine ligands are 
also differentially bound, the most notable example 
being the flavonoid compounds which have a 
markedly higher binding affinity for TTR than for TBG 
(82).  Among drugs that compete with T4-binding to 
TTR are ethacrynic acid, salicylates, 2,4-dinitrophenol, 
penicillin (83, 84) and perfluoroalkyl substances (85).  
The latter have with near equal affinity to TTR and 
TBG.  Barbital also inhibits iodothyronine binding to 
TTR. 
 
Only 0.5% of the circulating TTR is occupied by T4.  
TTR has a relatively rapid turnover (t1/2 = 2 days) and 
a distribution space similar to that of HSA and TBG 
(86, 87) except that it also exists in CSF. Hence, acute 
diminution in the rate of synthesis is accompanied by 
a rapid decrease of its concentration in serum. 
 

Physiology   
 
Normal average concentration in serum is 25 mg/dl, 
and corresponds to a maximal binding capacity of 
approximately 300 µg T4/dl.  Changes in TTR 
concentration have relatively little effect on the serum 
concentration of serum iodothyronines (80, 88).  There 
is a distinct reciprocal relationship between acquired 
changes in TBG and TTR concentration related to 
gender, age, glucocorticoids, estrogen and androgens 
(42, 51, 89-91). 
 
Acquired TTR Abnormalities   
 
The reduction or serum TTR concentration surpasses 
that of TBG in major illness, nephrotic syndrome, liver 
disease, cystic fibrosis, hyperthyroidism, and protein-
calorie malnutrition (10, 92-94).  Increased serum TTR 
concentration can occur in some patients with islet cell 
carcinoma (95).  Studies on the metabolism of TTR in 
man, utilizing radioiodinated purified human TTR, 
indicate that diminished TTR concentration associated 
with severe illness or stress is due to a decrease in the 
rate of synthesis or an increase in the rate of 
degradation, or both (86, 87). 
 
HUMAN SERUM ALBUMIN (HSA) 
 
The Molecule, Structure and Physical Properties  
 
HSA is a 66.5 kD protein synthesized by the liver.  It is 
composed of 585 amino acids with high content of 
cystines and charged amino acids but no 
carbohydrate (96).  The three domains of the molecule 
can be conceived as three tennis balls packaged in a 
cylindrical case. 
 
Gene Structure and Transcriptional Regulation   
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HSA is encoded by a single gene copy located on 
human chromosome 4 (4q11-q13) (97).  The gene 
contains 15 exons, 14 of which are coding (98) (Fig. 
2). The promoter region of the HSA gene has been 
most intensive studied.  The transcriptional regulation 
has been best characterized in rodents that share 90% 
sequence homology with the corresponding human 
gene, including a distal enhancer element 10 kbp 
upstream from the promoter region (99).  Binding sites 
for hepatocyte enriched nuclear proteins, such as 
HNF-1, C/EBP, and DBP have been identified (100-
102). 
 
Biological Properties   
 
HSA associates with a wide variety of substances 
including hormones and drugs possessing a 
hydrophobic region, and thus the association of TH to 
HSA can be viewed as nonspecific.  Of the several 
iodothyronine-binding sites on the HSA molecule, only 
one has a relatively high affinity for T4 and T3.  Yet 
these are 10,000-fold inferior to those of TBG (27).  
Fatty acids and chloride ions decrease their binding to 
HSA (27).  The biologic t1/2 of HSA is relatively long 
(103).  Some of its properties are summarized in Table 
1. 
 
More than half of the total protein content in serum is 
HSA.  As a result, it is the principal contributor to the 
maintenance of the colloid osmotic pressure (96).  It 
has been suggested that HSA synthesis may be, in 
part, regulated by a feedback mechanism involving 

alteration in the colloid osmotic pressure.  Indeed, 
down-regulation of HSA gene expression has been 
recently observed during the infusion of 
macromolecules in the rat (104).  
 
Physiology   
 
Because of the low affinity and despite the high 
capacity of HSA for iodothyronines, its contribution to 
thyroid hormone transport is relatively minor.  Thus, 
even the most marked fluctuations of serum HSA 
concentration, including analbuminemia, have no 
significant effects on thyroid hormone levels (105). 
 
LIPOPROTEINS 
 
Lipoproteins bind T4, and to some extent T3 (9, 106). 
The affinity for T4-binding is similar to that of TTR.  
These proteins are estimated to transport roughly 3% 
of the total T4 and perhaps as much as 6% of the total 
T3 in serum.  The binding site of apolipoprotein A1 is 
a region of the molecule that is distinct from that 
portion which binds to the cellular lipoprotein 
receptors, and the physiological role of such binding is 
still unclear.  
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