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ABSTRACT 

The thyroid-stimulating hormone (TSH) receptor (TSHR) is a member of the 
glycoprotein hormone receptors (GPHRs), a sub-group of class A G protein-coupled 
receptors (GPCRs). TSHR and its ligand thyrotropin are of essential importance for growth 
and function of the thyroid gland. The TSHR activates different G-protein subtypes and 
signaling pathways, of which Gs and Gq induced signaling are of highest importance in the 
thyroid gland. A proper interplay between TSH and TSHR is pivotal for thyroid growth and 
regulated production and release of thyroid hormones (TH). Autoimmune (antibody binding) 
or non-autoimmune (occurrence of mutants) TSHR dysfunctions are the underlying cause of 
several pathologies, including rare cancer-development. The sequential processes of TSHR 
binding, signal transduction across the cell-membrane and activation of intracellular effectors 
involve elaborate specific structural properties of the receptor and several interacting 
proteins. In consequence, different pathogenic mutations at TSHR or TSH may have diverse 
impact on particular molecular functions, but finally result in either hypo- or hyperthyroid 
states accompanied or not by various growth anomalies. We here summarize current 
knowledge regarding naturally occurring TSHR mutations, associated diseases and related 
molecular pathogenic mechanisms at the level of TSHR structure and function. For complete 
coverage of this and related areas in Endocrinology, visit our free web-
books, www.endotext.org and www.thyroidmanager.org  
 
 
GAIN-OF-FUNCTION MUTATIONS 

On a theoretical basis, for a hormone receptor, “gain-of-function” may have several 
meanings: (i) activation in the absence of ligand (constitutively); (ii) increased sensitivity to its 
normal agonist; (iii) increased, or de novo sensitivity to an allosteric modulator; (iv) 
broadening of its specificity. When the receptor is part of a chemostat, as is the case for the 
TSHR, the first situation is expected to cause tissue autonomy, whereas the second would 
simply cause adjustment of TSH to a lower value. In the third and fourth cases, inappropriate 
stimulation of the target will occur because the illegitimate agonists or modulators are not 
expected to be subject to the normal negative feedback. If a gain-of-function mutation of the 
first category occurs in a single cell normally expressing the receptor (somatic mutation), it 
will become symptomatic only if the regulatory cascade controlled by the receptor is 
mitogenic in this particular cell type or, during development, if the mutation affects a 
progenitor contributing significantly to the final organ. Autonomous activity of the receptor will 



cause clonal expansion of the mutated cell. If the regulatory cascade also positively controls 
function, the resulting tumor may progressively take over the function of the normal tissue 
and ultimately result in autonomous hyperfunction. If the mutation is present in all cells of an 
organism (germline mutation) autonomy will be displayed by the whole organ. 
 
 From what we know of thyroid cell physiology it is easy to predict the phenotypes 
associated with gain-of-function of the cAMP-dependent regulatory cascade. Two 
observations provide pertinent models of this situation. Transgenic mice made to express 
ectopically the adenosine A2a receptor in their thyroid display severe hyperthyroidism 
associated with thyroid hyperplasia (1). As the A2a adenosine receptor is coupled to Gs and 
displays constitutive activity due to its continuous stimulation by ambient adenosine (2), this 
model mimics closely the situation expected for a gain-of-function germline mutation of the 
TSHR. Patients with the McCune-Albright syndrome are mosaïc for mutations in the Gs 
protein (Gsp mutations) leading to the constitutive stimulation of adenylyl-cyclase (3). 
Hyperfunctioning thyroid adenomas develop in these patients from cells harboring the 
mutation, making them a model for gain-of-function somatic mutations of the TSHR. A 
transgenic model in which Gsp mutations are targeted for expression in the mouse thyroid 
has been constructed. Though with a less dramatic phenotype this represents also a 
pertinent model for a gain-of-function of the cAMP regulatory cascade (4). 

Since the TSHR is capable of activating both Gs and Gq (though with lower potency) 
the question arises whether mutations with a different effect on the two cascades would be 
associated with different phenotypes. Studies in mice (5) and rare patients (6) suggests that 
activation of Gq may be required to observe goitrogenesis in patients with non-autoimmune 
familial hyperthyroidism. However, when tested in transfected non-thyroid cells, all identified 
gain-of-function mutations of the TSHR stimulate constitutively Gs, with only a minority 
capable of stimulating both Gs and Gq (7,8). Also, thyroid adenomas or multinodular goitre 
are frequent in McCune Albright syndrome, which is characterized by pure Gs stimulation (9). 
 
 Familial non-autoimmune hyperthyroidism or hereditary toxic thyroid hyperplasia 
  
 The major cause of hyperthyroidism in adults is Graves' disease in which an 
autoimmune reaction is mounted against the thyroid gland and auto-antibodies are produced 
that recognize and stimulate the TSHR (10,11). This may explain why the initial description 
by the group of Leclère of a family showing segregation of thyrotoxicosis as an autosomal 
dominant trait in the absence of signs of autoimmunity was met with skepticism (12). Re-
investigation of this family together with another family from Reims identified two mutations of 
the TSHR gene, which segregated in perfect linkage with the disease (13). A series of 
additional families have been studied since (14-28) [Figure 1 and Table 1, For a completed 
list of naturally occurring TSHR single amino acid substitutions with their functional 
characteristics, see the glycoprotein hormone receptor information resource “SSFA” (29,30) 
available under: http://www.ssfa-gphr.de]. The functional characteristics of these mutant 
receptors confirm that they are constitutively stimulated (see below). This nosological entity, 
hereditary toxic thyroid hyperplasia (HTTH), sometimes called Leclère’s disease, is 
characterized by the following clinical characteristics: autosomal dominant transmission; 
hyperthyroidism with a variable age of onset (from infancy to adulthood, even within a given 
family); hyperplastic goiter of variable size, but with a steady growth; absence of clinical or 
biological stigmata of auto-immunity. An observation common to most cases is the need for 
drastic ablative therapy (surgery or radioiodine) in order to control the disease, once the 



patient has become hyperthyroid (13,31). The autonomous nature of the thyroid tissue from 
these patients has been elegantly demonstrated by grafting in nude mice (32). Contrary to 
tissue from Graves' disease patients, HTTH cells continue to grow in the absence of 
stimulation by TSH or TSAb.  

The prevalence of hereditary toxic thyroid hyperplasia is difficult to estimate. It is likely 
that many cases are still mistaken for Graves' disease. This may be explained by the high 
frequency of thyroid auto-antibodies (anti-thyroglobulin, anti-thyroperoxidase) in the general 
population. It is expected that wider knowledge of the existence of the disease will lead to 
better diagnosis. This is not a purely academic problem, since presymptomatic diagnosis in 
children of affected families may prevent the developmental or psychological complications 
associated with infantile or juvenile hyperthyroidism (for a review, see (33)). A country-wide 
screening for the condition has been performed in Denmark. It was found in one out of 121 
patients with juvenile thyrotoxicosis (0.8%; 95% CI: 0.02-4.6%), which corresponds to one in 
17 patients with presumed non-autoimmune juvenile thyrotoxicosis (6%; 95% CI:0.15-28.69) 
(34). 
 
 Sporadic toxic thyroid hyperplasia 
 
 Cases with toxic thyroid hyperplasia have been described in children born from 
unaffected parents (35-39). Conspicuously, congenital hyperthyroidism was present in most 
of the cases and required aggressive treatment. Mutations of one TSHR allele were identified 
in the children, but were absent in the parents. As paternity was confirmed by mini- or 
microsatellite testing, these cases qualify as true neo-mutations. When comparing the amino 
acid substitutions implicated in hereditary and sporadic cases, for the majority, they do not 
overlap (see Table 1). Whereas most of the sporadic cases harbor mutations that are also 
found in toxic adenomas, most of the hereditary cases have "private" mutations. Although 
there may be exceptions, the analysis of the functional characteristics of the individual 
mutant receptors in COS cells, and the clinical course of individual patients, suggest an 
explanation for this observation: "sporadic" and somatic mutations seem to have a stronger 
activating effect than "hereditary" mutations (40). From their severe phenotypes, it is likely 
that newborns with neo-mutations would not have survived, if not treated efficiently. On the 
contrary, from inspection of the available pedigrees, it seems that the milder phenotype of 
patients with “hereditary" mutations has only limited effect on reproductive fitness. The fact 
that "hereditary" mutations are rarely observed in toxic adenomas is compatible with the 
suggestion that they would cause extremely slow tissue growth and, accordingly, would 
rarely cause thyrotoxicosis if somatic. There is, however, no a priori reason for neo-mutations 
to cause stronger gain-of-function than hereditary mutations. Accordingly, an activating 
mutation of the TSHR gene has been found in a six month child with subclinical 
hyperthyroidism presenting with weight loss as the initial symptom (41). 
 
 Somatic mutations: autonomous toxic adenomas 
 
 Soon after mutations of Gαs had been found in adenomas of the pituitary 
somatotrophs (42), similar mutations (also called Gsp mutations) were found in some toxic 
thyroid adenomas and follicular carcinomas (43-46). The mutated residues (Arg201, Glu227) 
are homologous to those found mutated in the ras proto-oncogenes: i.e. the mutations 
decrease the endogenous GTPase activity of the G protein, resulting in a constitutively active 
molecule. Toxic adenomas were found to be a fruitful source of somatic mutations activating 



the TSHR, probably because the phenotype is very conspicuous and easy to diagnose (47). 
Whereas mutations are distributed all along the serpentine portion of the receptor and even 
in the extracellular amino-terminal domain (48-54), there is clearly a hotspot at the 
cytoplasmic end of the sixth transmembrane segment (see Figure 1). The clustering reflects 
the pivotal role of this portion in the activation mechanism observed in the TSHR and in class 
A GPCRs generally [e.g. (55-61)]. 

Despite some dispute about the prevalence of TSHR mutations in toxic adenomas 
(which may be due to different origin of patients (62,63) or different sensitivity of the 
methodology) the current consensus is that activating mutations of the TSHR are the major 
cause of solitary toxic adenomas and account for about 60 to 80% of cases (15,7,64-66). 
Contrary to initial suggestions (63), the same percentage of activating TSHR mutations is 
observed in Japan, an iodine-sufficient country with low prevalence of toxic adenomas (67). 
In some patients with a multinodular goiter and two zones of autonomy at scintigraphy, a 
different mutation of the TSHR was identified in each nodule (68,36,69,70). This indicates 
that the pathophysiological mechanism responsible for solitary toxic adenomas can be at 
work on a background of multinodular goiter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 
 
CODONS Substitution Somatic 

mutation 
Germline 
neo- 
mutation 

Germline 
familial 

Cancer Stimulation 
of basal 
cAMP 

Stimulation 
of IP/Ca 

Ser 281 Asn +    + - 
  Thr +    + - 
  Ile  +   + - 
Asp 403 deletion +    + nd 
Asn 406 Ser   +  + nd 
Ser 425 Ile +    + - 
Ala  428 Val  +   nd nd 
Gly 431 Ser   +  + + 
Met 453 Thr + +  + + - 
Met 463 Val   +  + - 
Ala 485 Val   +  + - 
Ile 486 Phe +    + + 
  Met +    + ± 
  Asn  +   + - 
Ser 505 Arg   +  + - 



  Asn  +   + - 
Val 509 Ala   +  + - 
Leu 512 Arg +    + nd 
  Gln +    + nd 
Ile 568 Thr + +   + ± 
  Phe +    + ± 
Glu 575 Lys   +  + nd 
Ala 593 Asn +    + nd 
Val 597 Leu  +   + nd 
  Phe     + nd 
Y613-F631 deletion      - 
Tyr 601 Asn +    + - 
Asp 617 Tyr   +  + ± 
Asp 619 Gly +    + - 
Thr 620 Ile +   + + nd 
Ala 623 Ile +    + ± 
  Val +  +  + - 
  Ser +   + + - 
  Phe +    + nd 
Met 626 Ile   +  + nd 
Ala 627 Val +    + nd 
Leu 629 Phe +  +  + - 
Ile 630 Leu +    + - 
Phe 631 Leu +    + - 
  Cys + +   + - 
  Ile    + + - 
Thr 632 Ile + +   + - 
Thr 632 Ala +   + + nd 
Asp 633 Tyr +   + + - 
  Glu +    + - 
  His +   + + - 
  Ala +    + - 
Ile 635 Val +    + nd 
Cys 636 Trp   +  + - 
  Arg  +   + ± 
Pro 639 Ser +  +  + + 
Ile 640 Lys +    + nd 
Asn 650 Tyr   +  + - 
Val 656 Phe +    + - 
Del 658-661  +     - 
Asn 670 Ser   +  + - 
Cys 672 Thr   +  + - 
Leu 677 Val    + + nd 
 
Table 1: Gain-of-function TSHR mutations. The nature of the mutations is indicated with their 
origins (somatic, germline sporadic, germline familial, cancer) and effects on intracellular regulatory 
cascades. nd - not determined; “-“ decreased functional property; “+” enhanced; “+/-“ similar to wild 
type.  
 
 In agreement with this notion, activating mutations of the TSHR have been identified 
in hyperfunctioning areas of multinodular goiter (70,19,65,23). The independent occurrence 
of two activating mutations in a patient may seem highly improbable at first. However, the 
multiplicity of the possible targets for activating mutations within the TSHR makes this less 
unlikely. It is also possible that a mutagenic environment is created in glands exposed to a 
chronic stimulation by TSH, resulting in H2O2 generation (71,72). Finally the involvement of 
TSHR mutations in thyroid cancers has been implicated in a limited number of follicular 
thyroid carcinoma (73-81). 
 



Figure 1 

 
Legend to figure 1: Structural model of the TSHR with interacting proteins and highlighted 
positions for gain-of-function mutations. Left: The model shows different parts of the receptor for 
which homologous structural information is available. The leucine-rich repeat domain (LRRD) and the 
hinge region are both harboring determinants for hormone (TSH model (surface) based on the FSH 
structure (82)) and antibody binding. The hinge region (colored pink) structurally links the LRRD with 
the serpentine domain made of transmembrane helices (H) 1-7 connected by intracellular (I1-3) and 
extracellular (E1-3) loops. Three cysteine bridges (yellow spheres) between the C-terminal LRRD and 
the C-terminus of the hinge region are indicated that are required for correct receptor arrangement and 
function. Wild type positions of constitutively activating mutations are indicated by side-chain 
representation (red sticks). Right: The known activating mutations (Table 1) are distributed over the 
entire serpentine portion of the receptor structure with clustering in the central core and specifically in 
helix 6. In contrast to other glycoprotein-hormone receptors (GPHRs), naturally occurring activating 
mutations were also identified in the extracellular loops and in the hinge region (Ser281).  
 
Structure-function relationships of the TSHR 
 
An important observation has been that the wild-type TSHR itself displays significant 
constitutive activity [(83,47) and review (84)]. This characteristic is not exceptional amongst 
GPCRs (e.g. (85)), but interestingly, it is not shared, at least to the same level, by its close 
relatives, the human luteinizing hormone/chorionic gonadotropin (LH/CG) receptor (LHCGR) 
and the human follitropin (FSH) receptor (FSHR). Compared to the TSHR, the LHCGR 
displays minimal basal activity and the human FSH receptor is totally silent (86). Together 
with the observation that mutations in residues distributed over most of the serpentine portion 
of the TSHR are equally effective in activating it (which does not seem to be a general 
characteristic in all GPCRs) this suggests that the unliganded TSHR might be less 
constrained than other GPCRs. As a consequence, being already “noisy” it would be more 



prone to further destabilization by a wide variety of mutations affecting multiple structural 
elements (Figure 1).  

The effect of activating mutations must accordingly be interpreted in terms of 
“increase in constitutive activity”. Most constitutively active mutant receptors (also referred to 
as “CAMs”) found in toxic adenomas and/or toxic thyroid hyperplasia share common 
characteristics: i) they increase the constitutive activity of the receptor toward stimulation of 
adenylyl cyclase; ii) with a few notable exceptions (see Table 1 and below) (48), they do not 
display constitutive activity toward the inositol phosphate/diacylglycerol pathway; iii) their 
expression at the cell surface is decreased (from slightly to severely); iv) most, but not all of 
them keep responding to TSH for stimulation of cAMP and inositol phosphate generation, 
with a tendency to do so at decreased median effective concentrations; and v) they bind 
125I-labeled bovine TSH with an apparent affinity higher than that of the wild-type receptor. 
Of note, CAMs with mutations at Ser281 (to Ile) (37) in the extracellular N-terminal part, at 
Ile486 (to Phe or Met) (48) and Ile568 (to Thr) (48) in the first and second extracellular loops, 
respectively, and at both Asp633 (to His) (7) and Pro639 (to Ser) (69) in transmembrane 
helix 6 are exceptional in that in addition to stimulating adenylyl cyclase, they cause 
constitutive activation of the inositol phosphate pathway. The constitutive activity of these 
mutants is interesting as it points to positions and structural fragments of the wild type 
receptor which may be of high relevance for its physiological coupling to both Gs and Gq 
(Figure 1 and Table 1). 

No direct relationship is found between the level of cAMP achieved by different 
mutants in transfected COS cells and their level of expression at the cell membrane (87), 
which means that individual mutants have widely different “specific constitutive activity” 
(measured as the stimulation of cAMP accumulation/receptor number at the cell surface). 
Although this specific activity may tell us something about the mechanisms of receptor 
activation, it is not a measure of the actual phenotypic effect of the mutation in vivo. Indeed, 
one of the relatively mild mutations, observed up to now only in a family with HTTH 
(Cys672Tyr) (13), is among the strongest according to this criterion.  

Differences between the effects of the mutants in transfected COS or HEK293 cells 
and thyrocytes in vivo render these correlations a difficult exercise. Indeed, most of the 
activating mutations of the TSHR have been studied by transient expression in COS or 
HEK293T cells and there is no guarantee that the mutants will function in an identical way in 
these artificial systems as they do in thyrocytes (88). In thyrocytes, a better relation has been 
observed between adenylylcyclase stimulation and differentiation than with growth (88). 
However, the built-in amplification associated with transfection of constructs in COS or HEK 
293T cells has the advantage of allowing detection of even slight increases in constitutive 
activity of certain TSHR mutants.  

 
According to a current model of GPCR activation, the receptor would exist under at 

least two interconverting conformations: R (silent conformations) and R* (active forms) 
(89,55,90,91) (Figure 2). The unliganded wild type receptor would shuttle between both 
forms, the equilibrium being in favor of R (90). Binding of the agonistic ligand is believed to 
stabilize the R* conformation.  
 
Figure 2 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend to figure 2: Left. Schematic representation of the equilibria between inactive (R) and active 
(R*) conformations of TSHR. The triangles indicate the equilibrium point of the wild type receptor 
(pink) and hypothetical mutants with increasing constitutive activity (brown, red). The situation of a 
receptor which would be devoid of basal activity is also indicated (blue triangle). Note that the wild type 
receptor (pink) has basal activity. Right. The concentration action curves corresponding to the 
hypothetical mutants and wild type receptors are indicated with the same color code. 
 

The resulting R-to-R* transition was supposed to involve a conformational change 
that modifies the relative position of transmembrane helices to each other, which in turn 
would translate into conformational changes in the cytoplasmic crevice between the 
intracellular loops and transmembrane helices interacting with the hetero-trimeric G-protein. 
This model is strongly supported by solved crystal structures of active GPCR conformations 
(59,61) reviewed in (92)]. They reveal that receptor activation and signal transduction is 
characterized by specific movements of transmembrane helices (TMHs) 5, 6 and 7 leading to 
modification of their distances relative to each other. Helix 6 is a major player in this process, 
its cytoplasmic end moves away from that of TMH3 by turning around a pivotal helix-kink. 
The result is an “opening” of the cytoplasmic crevice of the receptor allowing interaction with 
the G protein (59). (A more detailed description of the activation mechanics, adapted to a 
model of the TSHR, is given in the legend to Figure 3.) This essential function of TMH6 for 
determination of an active state (59,61) might explain, why most activating TSHR mutations 
were found in this particular helix (Figure 1). This conclusion is in accordance with the early 
concept that the silent form of GPCRs would be submitted to structural constraints requiring 
the wild-type primary structure of the helix 6 and the connected third intracellular loop 
(93,90,91), and explains why these constraints could be released by a wide spectrum of 
amino acid substitutions in this segment as observed also for the TSHR (60). 
 
Figure 3 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend to figure 3: Model of the TSHR structure in complex with TSH and G-protein and 
illustration of the putative activation mechanism. The receptor is displayed as a backbone cartoon 
in complex with the hetero-dimeric hormone and a hetero-trimeric G-protein molecule (surface 
representations). For the serpentine portion of the receptor, the model is based on the solved structure 
of the β2-adrenergic/Gs crystal (61). The ectodomain (in complex with TSH) and the hinge region 
were modeled based on a determined and homologous FSHR-FSH structure (82). A selection of 
residues affected by known activating mutations are shown as red sticks and identified by their 
position in the primary structure of the protein (see Figure 1). Their positions tentatively illustrate the 
“path” followed by the activation signal, from outside the membrane (in the ectodomain) to the 
cytoplasmic surface of the receptor, via the transmembrane helices. Briefly, the hormone binds to both 
the Leucine rich repeat domain (LRRD) and the hinge region (e.g. sulfated tyrosine 385 (sTyr)). This 
initial signal is transduced into a conformational change of a module (intramolecular agonist) 



constituted by the “hinge” region of the ectodomain and the exoloops (E1-3) of the serpentine domain. 
In favor of this model, several residues belonging to this module (Ser281 in the ectodomain; Asp403 
and Asn406 at the ectodomain-serpentine domain border; Ile486, Ile568, Val656 in the exoloops) can 
activate the receptor constitutively when mutated. Together with the observation that a truncated 
receptor devoid of ectodomain displays significant increase in constitutive activity, this suggests that 
activation of the TSHR involves switching of specific extracellular portions from a tethered inverse 
agonist (maintenance of the basal state) to an intramolecular agonist (94). The resulting structural 
changes affecting the exoloops are expected to be directly conveyed to the transmembrane helices 
with the resulting breakage of silencing locks (arrows). From comparison of the inactive and active 
rhodopsin (59) or beta-2 adrenoreceptor structures (61), the largest spatial movement affects TMH6, 
involving a combination of horizontal and rotational (wound arrow) movements around a pivotal helix-
kink at a proline (TSHR Pro639). These global changes result in the partial “opening” of the intra-
helical crevice on the cytoplasmic side of the receptor (horizontal double-head arrows), allowing 
complete binding and activation of G-proteins. 

 
In addition to the release of structural locks stabilizing the inactive conformation of 

GPCRs, activation of the GPHRs has been shown to involve a triggering mechanism exerted 
by an “intramolecular agonist” constituted by segments of the exoloops and the C-terminal 
portion of their ectodomain (94-96). According to this model, it is this module, activated by 
the binding of TSH, thyroid stimulating auto-antibodies, thyrostimulin (97,98) or mutations 
(see below) which would be the immediate agonist of the serpentine portion of the receptor 
(94,95,99,96,100,101). In all cases, however, mutations are expected to affect the local three 
dimensional structure of the receptor with a resulting global effect on its activation state. 
Amongst these are modification of “knob and hole” interactions (e.g. by repulsion) in tightly 
packed local microdomains and breakage, or creation of intramolecular interactions by 
changing the biophysical characteristics of side chains (e.g. (6)). As exclusive examples of 
these, mutations at Asp633 (57,102) or Asp619 (47) are expected to break interhelical locks 
between transmembrane helices 6 and 7 or 3, respectively. Interestingly, even mutations 
affecting an important residue of the trigger in the ectodomain (Ser281) seem also to be 
responsible for a “loss-of-local structure”. Indeed, substitution of the wild type residue 
(serine) by almost any amino acid results in constitutive activation (103,104). This implicates 
that predictions of phenotype-genotype relationships must always be considered with much 
caution if they are not backed by detailed structural and functional knowledge. 

 
 
Familial gestational hyperthyroidism 
 
 Some degree of stimulation of the thyroid gland by human chorionic gonadotrophin 
(hCG) is commonly observed during early pregnancy. It is usually responsible for decrease in 
serum thyrotropin with an increase in free thyroxine concentrations that remains within the 
normal range (for references see (105)). When the concentrations of hCG are abnormally 
high, like in molar pregnancy, true hyperthyroidism may ensue. The pathophysiological 
mechanism is believed to be the promiscuous stimulation of the TSHR by excess hCG, as 
suggested by the rough direct or inverse relation between serum hCG and free T4 or TSH 
concentrations, respectively (106,105). A convincing rationale is provided by the close 
structural relationships of the glycoprotein hormones and their receptors, respectively (107). 
 A new syndrome has been described in 1998 in a family with dominant transmission 
of hyperthyroidism limited to pregnancy (Figure 4) (108). The proposita and her mother had 
severe thyrotoxicosis together with hyperemesis gravidarum during the course of each of 



their pregnancies. When non pregnant they were clinically and biologically euthyroid. Both 
patients were heterozygous for a K183R mutation in the extracellular amino-terminal domain 
(Figure 3) of the TSHR gene. When tested by transient transfection in COS cells, the mutant 
receptor displayed normal characteristics towards TSH. However, providing a convincing 
explanation to the phenotype, it showed higher sensitivity to stimulation by hCG, when 
compared with wild type TSHR (108).  

The amino acid substitution responsible for the promiscuous stimulation of the TSHR 
by hCG is surprisingly conservative. Also surprising is the observation that residue 183 is a 
lysine in both the TSH and LH/CG receptors. When placed on the available three 
dimensional model of the hormone-binding domain of the TSHR (109), residue 183 belongs 
to one of the beta-sheets which constitute the putative surface of interaction with the 
hormones (Figure 3).  
 
Figure 4 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend to figure 4: Familial gestational hyperthyroidism secondary to mutation of the TSHR 
gene. Upper panel displays the pedigree, with the two ladies affected, together with a “snake plot “of 
the TSHR, with the mutation indicated. Lower right panel illustrates the increased sensitivity of the 
K183R mutant TSHR vis-à-vis hCG. Binding of TSH, or hCG to the ectodomain of the TSHR, 
according to models based on crystallographic data from (110,82) is visualized in figure 3.  
 

Detailed analysis of the effect of the K183R mutation by site-directed mutagenesis 
indicated that any amino acid substitution at this position confers a slight increase in stability 
to the illegitimate hCG/TSHR complex (111). This increase in stability would be enough to 
cause signal transduction by the hCG concentrations achieved in pregnancy, but not by the 
LH concentrations observed after menopause. Indeed, the mother of the proposita remained 
euthyroid after menopause. This finding is compatible with a relatively modest gain-of-
function of the K183R mutant upon stimulation by hCG. A second family with the same 



phenotype has recently been identified. Interestingly, the mutation affects the same residue 
(K183N) (112). 

 
Contrary to other mammals, human and primates rely on chorionic gonadotropin for 

maintenance of corpus luteum in early pregnancy (113). The frequent partial suppression of 
TSH observed at peak hCG levels during normal pregnancy indicates that evolution has 
selected physiological mechanisms operating very close to the border of thyrotoxicosis. This 
may provide a rationale to the observation that, in comparison to other species, the 
glycoprotein hormones of primates display a lower biological activity due to positive selection 
by evolution of specific amino acid substitutions in their alpha-subunits (114). Up to now no 
spontaneous mutation has been identified which would increase the bioactivity of hCG. An 
interesting parallel may be drawn between familial gestational hyperthyroidism and cases of 
spontaneous ovarian hyperstimulation syndrome (sOHSS) (86,115). In sOHSS, mutations of 
the FSH receptor gene render the receptor abnormally sensitive to hCG. The result is 
recurrent hyperstimulation of the ovary, on the occasion of each pregnancy.  

 
LOSS OF FUNCTION MUTATIONS 
 
 Loss-of-function mutations in the TSHR gene are expected to cause a syndrome of 
“resistance to TSH.” The expected phenotype is likely to resemble that of patients with 
mutations in TSH itself. These mutations have been described early because of the prior 
availability of information on TSH alpha and beta genes (114). Mouse models of resistance 
to TSH are available as natural (hyt/hyt mouse) (116) or experimental TSHR mutant lines 
(117,118). Interestingly, and contrary to the situation in human (see below), the thyroid of 
newborn TSHR knockout mice is of normal size. As expected, the homozygote animals 
displayed profound hypothyroidism. Their thyroids do not express the sodium-iodide 
symporter, but showed significant (non-iodinated) thyroglobulin production. From this 
information one would expect patients with two TSHR mutated alleles to exhibit a degree of 
hypothyroidism in accordance with the extent of the loss-of-function, going from mild, 
compensated, hypothyroidism, to profound neonatal hypothyroidism with absent iodide 
trapping. Heterozygous carriers are expected to be normal or display minimal increase in 
plasma TSH. 
 
Clinical cases with the mutations identified 
  

A few patients with convincing resistance to TSH had been described before 
molecular genetics permitted identification of the mutations (119,120). The first cases 
described in molecular terms were euthyroid siblings with elevated TSH (121). Sequencing of 
the TSHR gene identified a different mutation in each allele of the affected individuals, which 
made them compound heterozygotes. The substitutions were in the extracellular amino-
terminal portion of the receptor (maternal allele, P162A; paternal allele, I167N). The 
functional characteristics of the mutant receptors showed that the paternal allele was virtually 
completely non-functional, whereas the maternal allele displayed an increase in the median 
effective TSH concentration for stimulation of cAMP production. Current knowledge of the 
structure of part of the ectodomain of the receptor allows to establish structure-function 
relationships for mutations affecting this portion of the receptor (122,109,123-126,101). 

A large number of familial cases with loss-of-function mutations of the TSHR have 
been identified in the course of screening programs for congenital hypothyroidism (127-140) 



[(Figure 5, For a complete list of naturally occurring and side-directed TSHR single amino 
acid substitutions with their functional characteristics see the GPHR information resource 
“SSFA” available under: http://www.ssfa-gphr.de (29,30)]. Some of the patients displayed the 
usual criteria for congenital hypothyroidism, including high TSH, low free T4, and 
undetectable trapping of 99Tc. In some cases, plasma thyroglobulin levels were normal or 
high. The patients can be compound heterozygotes for complete loss of function mutations 
(129), or homozygotes, born to consanguineous (128) or apparently unrelated parents (134).  
 
Figure 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend to figure 5: Structural model of the TSHR with indication of loss-of-function mutations. 
The location and substitutions responsible for known loss-of-function mutations (side-chains as blue 
sticks) are indicated on a three-dimensional receptor model. Single letter abbreviations of amino-acids 
are used. In contrast to activating mutations, many inactivating mutations are located also in the 
LRRD. As observable in this complex model inactivating mutations can have different molecular 
effects on TSHR functions dependent on their localization, like diminishing hormone binding (location 
in the LRRD, e.g. R109Q), G-protein binding (intracellular localization, e.g. M527T, R531W), leading to 
a decreased receptor cell surface expression by modification of the three-dimensional structure (e.g. 
mutations at extracellular cysteines which interrupts stabilizing disulfide bridges, e.g. C390W), or 
interrupting the signal transport in the serpentine domain (located at the helices, e.g. A593V).  



 
In agreement with the phenotype of knock-out mice with homozygous invalidation of the 
TSHR, patients with complete loss-of-function of the receptor display an in-place, thyroid with 
completely absent iodide or 99Tc trapping. However, in contrast with the situation in mice, 
the gland is hypoplastic. Activation of the cAMP pathway, while dispensable for the 
anatomical development of the gland and thyroglobulin production, is thus absolutely 
required for expression of the NIS gene and, at least in human, for normal growth of the 
tissue during fetal life. This explains that in the absence of thyroglobulin measurements or 
expert echography, loss-of-function mutations of the TSHR may easily be misdiagnosed as 
thyroid agenesis. In the heterozygous state, complete loss of function mutations of the TSHR 
is a cause of moderate hyperthyrotropinemia (subclinical hypothyroidism), segregating as an 
autosomal dominant trait (141).  
 
Resistance to thyrotropin not linked to the TSHR gene 
 

Finally, it must be stressed that an autosomal dominant form of partial resistance to 
TSH has been demonstrated in families in which linkage to the TSHR gene has been 
excluded (142). A locus has been identified on chromosome 15q25.3-26.1 but the gene 
responsible for the phenotype has not been identified yet (143).  
 
Polymorphisms 
 

A series of single nucleotide polymorphisms affecting the coding sequence have 
been identified in the TSHR gene. After the initial suggestion that some of these (D36H, 
P52T, D727E) would be associated with susceptibility to autoimmune thyroid diseases (144-
146) the current consensus is that they represent neutral alleles with no pathophysiological 
significance (147-150). However, a genome-wide study involving a large cohort of patients 
has recently demonstrated association between non-coding SNPs at the TSHR gene locus 
and Graves’disease (151,152). The genetic substratum responsible for this association is still 
under study (152). However, a large meta-analysis of genome wide association studies failed 
to identify the TSHR as a locus affecting plasma TSH values (153). 

One polymorphic residue deserves special mention: position 601 was found to be a 
tyrosine or a histidine in the two initial reports of TSHR cloning (154,155). Characterization of 
the two alleles by transfection in COS cells indicated interesting functional differences: the 
Tyr601 allele displayed readily detectable constitutive activity, whereas the His601 was 
completely silent; the Tyr601 allele responded to stimulation by TSH by activating both the 
adenylylcyclase and phospholipase C dependent regulatory cascades, when the His601 
allele was only active on the cAMP pathway (156,157). The Tyr601 allele is by far the most 
frequent in all populations tested. A Tyr601Asn mutation was found in a toxic adenoma. 
Characterization of the mutant demonstrated increase in constitutive activation of the cAMP 
regulatory cascade (157), making the 601 residue an interesting target for structure-function 
studies.  
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