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ABSTRACT 
Neurohormonal systems play a critical role in cardiovascular homeostasis as well 
cardiovascular pathophysiology and diseases such as congestive heart failure, coronary artery 
disease, hypertension and chronic kidney disease.  Neurohormonal activation is an important 
cause and therefore an important therapeutic target to treat cardiovascular diseases.  It is well 
established that activation of hormonal systems such as the renin-angiotensin-aldosterone 
system leads to increased cardiac injury and dysfunction which predispose to congestive heart 
failure.  Obesity is also associated with neurohormonal activation and it is associated with 
multiple hemodynamic and metabolic factors which increase the risk of developing 
cardiovascular and renal diseases. In addition to direct hemodynamic effects, activation of 
hormonal systems may cause cardiovascular dysfunction through mechanisms including 
inflammation, oxidative stress, and mitochondrial dysfunction.  In this chapter we briefly discuss 
the hemodynamic effects of several key cardiovascular hormones as well as their non-
hemodynamic effects with a focus on inflammation, oxidative stress, and metabolic regulation. 

INTRODUCTION  

Neurohumoral stimulation is a key finding in syndromes such as chronic heart failure (CHF), 
type-2 diabetes mellitus (T2DM), and chronic kidney disease (CKD).  Activation of 
cardiovascular hormonal systems such as the renin-angiotensin-aldosterone system (RAAS) 
translates into progression of the underlying disease and/or development of cardiovascular 
comorbidity associated with an increased risk for major adverse cardiac events. Figure 1 
provides an overview of cardiovascular neurohormonal systems pertinent to clinical syndromes 
such as CHF, T2DM and CKD. 
 
 



 
Figure 1. Regulation of hormones pertinent to cardiovascular syndromes: Angiotensin 
(Ang), Brain-natriuretic peptide (BNP), Endothelin-1 (ET-1)  (Solid arrow: stimulation, 
non-solid arrow: inhibition). 
 
 
Based on epidemiologic data there is evidence that plasma levels of norepinephrine [1] and 
brain-natriuretic peptide (BNP) [2] are markers for adverse patient outcomes in CHF. Landmark 
studies have shown that CHF patients benefit from antagonism of the renin-angiotensin system 
(angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), 
beta-adrenergic blockade, and mineralocorticoid-receptor blockade.  Treatment with the ACEI 
enalapril reduced mortality in asymptomatic left ventricular dysfunction, moderate heart failure 
and advanced heart failure [3-5].  Based upon data from multiple randomized controlled trials, 
beta-blockers were associated with a 30% reduction in mortality and 40% reduction in 
hospitalizations in patients with class II and III heart failure [6].  In addition to beta-adrenergic 
and renin-angiotensin system antagonism, the addition of mineralocorticoid-receptor 
antagonists has conferred survival benefits in selected patients with CHF.  Based upon data 
from the Randomized Aldactone Evaluation Study (RALES) [7], Eplerenone Post Acute 
Myocardial Infarction Efficacy and Survival Study (EPHESUS) [8], and Eplerenone in patients 
with systolic heart failure and mild symptoms Study (EMPHASIS-HF) [9], current CHF 



guidelines recommend adding mineralocorticoid receptor antagonists in patients with class II to 
IV CHF and reduced LV ejection fraction [10].   
 
Beyond CHF, outcome-related research has tested the blockade of neurohumoral pathways in 
coronary artery disease (CAD) as well: the Heart Outcomes Prevention Evaluation Study 
(HOPE) has proven a 26% reduction in cardiovascular deaths in patients with coronary artery 
disease without signs of CHF when treated with an ACEI [11]. Therefore, a direct role for RAAS 
activation with regard to pathogenesis of CAD and disease progression has been suggested. 
Animal research suggests angiotensin II promotes aortic aneurysm formation [12]. A connection 
between angiotensin II and macrophage and T-lymphocyte infiltration of the arterial vessel wall 
has been established for aortic aneurysm formation [13]. 
 
Along with a decrease of renal function in CKD, the prevalence of cardiovascular comorbidity 
and incidence of major adverse cardiac events rises in a linear fashion [14]. There, RAAS 
activation appears to play a central role [15]. In addition, local hormone activation within the 
tubulo-interstitium, e.g. prostaglandin synthesis [16], may play a further role which remains to be 
elucidated. In addition, recent data suggest vitamin D supplementation reduces atherosclerosis 
in CKD [17], although blood pressure reduction by administering vitamin D is unlikely [18]. In 
that regard, vitamin D3 appears to control T-cells implicated in the atherosclerotic process [19]. 
 
Last, an emerging body of data points at specific states of neurohumoral activation in obesity.   
Close links between obesity and cardiovascular disease have been established [20].  Likely 
mechanisms by which obesity causes cardiovascular injury include hemodynamic effects 
(increased preload/hypervolemia and increased afterload/hypertension), inflammation, 
metabolic effects (hyperglycemia, dyslipidemia, insulin resistance) and lipotoxicity (Figure 2).  
 



 
Figure 2.  Mechanisms of obesity-induced cardiac dysfunction.  (LVH= left ventricular 
hypertrophy) 
 
 
 
The established diagnosis of metabolic syndrome predicts the risk for type-2 diabetes (24 fold 
increased) and for atherosclerosis (3-4 fold increased) [21, 22].  The metabolic syndrome is 
associated with a cascade of metabolic derangements which lead to cardiac and vascular injury, 
however, it is becoming evident that central/visceral obesity is the driving force behind many of 
these abnormalities [23-25].  In patients with CAD and normal BMI, central adiposity (measured 
by waist circumference and waist-to-hip ratio) was associated with increased mortality [25].  
Besides non-pharmacologic interventions such as increased physical activity and a low-caloric 
diet, medical interventions influencing appetite and metabolic rate are investigated. 
Neurohumoral mechanisms may offer additional insights into evolution towards T2DM. Among 
hypertensives treated either with losartan or atenolol in the LIFE study, the losartan-treated 
branch had a greater benefit in terms of T2DM prevention when compared to the atenolol-
treated group while blood pressure control was equal [26]. Furthermore, existing evidence 
strongly suggests that angiotensin II can promote insulin resistance and obesity. Consequently, 
specific neurohumoral mechanisms such as the RAAS may be intimately involved in diabetes 
evolution and RAAS blockade may ameliorate the deleterious effect of hyperglycemia.  



 
Research issues remain to be solved regarding specific signal cascades involved in specific 
states of neurohumoral stimulation associated with CHF, CKD, or T2DM. A better understanding 
of neurohumoral compensatory responses to pathologies may help explain a number of clinical 
puzzles and provide novel and better therapeutic tools.  
 
Overall, in this chapter, pertinent cardiovascular hormone actions are being highlighted with 
regard to hemodynamic actions as documented by alterations of systemic vascular resistance 
and cardiac output as well as non-hemodynamic effects such as inflammation, oxidative stress, 
and metabolic alterations.  

 

 

ACTIONS OF CARDIOVASCULAR HORMONES  

As an overview, cardiovascular effects are summarized for epinephrine, norepinephrine, B-type 
natriuretic peptide, renin, angiotensin II, aldosterone, endothelin and estrogen in Table 1.  In 
addition to their hemodynamic effects, hormones affect the cardiovascular system through non-
hemodynamic mechanisms including inflammation, oxidative stress, and metabolic effects.  In 
this chapter, we will briefly discuss the hemodynamic and non-hemodynamic effects of several 
hormones that have significant cardiovascular effects.   
 
Chronic inflammation as a result of cytokine activation may be monitored systemically by 
measuring C-reactive protein (CRP) released from the liver upon cytokine stimulation, by 
interleukin-6. An elevated CRP directly translates into a worse cardiovascular prognosis both in 
patients after myocardial infarction [27], and in apparently healthy persons without prior 
myocardial infarction, but with elevated CRP > 2 mg/l [28]. Therefore, cardiovascular hormone 
actions affecting interleukin pathways as detected by an increased CRP need to be regarded 
with scrutiny. 
 
Oxidative stress adversely affects cell function either by direct effects on membranes, proteins 
or nucleic acids or, indirectly, by scavenging nitric oxide and thereby disturbing vasomotor 
function. Oxidative stress in disease states such as T2DM may primarily be the result of 
endogenous sources (Figure 3). Enzymes such as NADPH oxidase, xanthine oxidase, and 
uncoupled nitric oxidase are able to release reactive oxygen species. In addition, reactive 
oxygen species may leak from mitochondria. In cardiovascular high-risk patients, in-vitro 
antioxidants like ascorbic acid or tocopherol do not translate into cardiovascular endpoint 
reduction [29]. Alternatively, therapies addressing sources of oxidative stress have become 
focus of interest aiming to control the production of reactive oxygen species and to increase 
nitric oxide bioavailability. Medical interventions that lower endogenous oxidative stress include 
ACE-inhibition [30], beta blockade [31], or the use of statins [32, 33]. 
 



 
Figure 3. Consequences of disease-related oxidative - stress regarding arteriolar tone. 
(Solid arrow: stimulation, non-solid arrow: inhibition.)  
 
 
 
Heart failure is associated with reduced cardiac energy production and impaired myocardial 
efficiency leading to an inability of the heart to meet the metabolic demands of the tissues.  
Neurohumoral activation in conjunction with perturbations in myocardial fatty acid and glucose 
metabolism lead to mitochondrial dysfunction and reduced myocardial ATP production [34].  
AMP-kinase is considered as an energy-sensor in the heart and stimulates cardiac energy 
production though fatty acid oxidation and glucose utilization [35]. Several hormones including 
insulin and adipokines such as leptin and adiponectin have been linked to AMP-kinase activity 
and may be important targets for stimulating myocardial ATP production.    
 
T2DM is associated with oxidative stress. Macro and microvascular complications of T2DM are 
closely related to elevated levels of oxidative stress. A recent study has shown that NADPH 
oxidase, a critical enzyme in oxidative stress cascade, is upregulated in vessels in patients with 
T2DM [36]. Low levels of adiponectin stimulate the activity of NADPH resulting in higher levels 
of oxidative stress.  
 



 
 
 
 
 
 

 
Table 1: Effects of hormones on the circulatory system. 
  Target  SVR  HR  SNS  Oxidative Stress  CRP  
Epinephrine  EC,VSMC  (↑↓)  ↑  ↑  (↑↓)    ↑  
Norepinephrine  VSMC  ↑  ↑  ↑  ↑  ↓  
BNP  EC,VSMC  ↓  ↔  ↓  ND  ND  
Angiotensin II  EC,VSMC  ↑  (↑↓)  ↑  ↑  ↔  
Aldosterone  EC,VSMC  ↑  ↔  ND ↑  ↔  
Endothelin  VSMC  ↑  (↑↓)  ↑  ↑  ↑  
Estrogen  EC  ↓  ↔  ↓  ↓  ↑  
SVR, systemic vascular resistance; HR, heart rate; SNS, sympathetic 
nervous system; CRP, C-reactive protein; EC, endothelial cells, VSMC, 
vascular smooth muscle cell. Autonomic changes are assessed via HR 
variability, sympathetic nervous system (SNS) activity, or norepinephrine 
plasma levels. Oxidative stress is assessed by isoprostane levels in serum. 
The state of inflammation is assessed by CRP levels 

  

 

Catecholamines  

Epinephrine stimulates α, β-1 and β-2 receptors nonselectively resulting in variable 
cardiovascular effects. Epinephrine causes vasoconstriction via activation of α-1 receptors and 
venoconstriction via α-2 actions [37].  Through β-1 mediated actions, epinephrine increases 
both ventricular contractility and heart rate thereby increasing myocardial workload and oxygen 
consumption.  However, epinephrine dose-dependently leads to vasodilation in skeletal muscle 
arterioles as a first-line response to stress. Endothelial cells emerge as a target for epinephrine 
as well [38]. In addition to well characterized chronotropic and inotropic effects on the heart, 
epinephrine bears a certain antioxidant potential by increasing both intra- and extracellular 
superoxide dismutase, a major oxidant-stress defense. Hydrogen peroxide, the product of the 
reaction catalyzed by superoxide dismutase is a reactive oxygen species that is readily 
disposed of by both catalase and reduced glutathione. The induction of superoxide dismutase 
by epinephrine, e.g. during vigorous exercise, increases the amount of hydrogen peroxide that, 
in turn, is a known activator of the endothelial isoform of nitric oxide synthase (eNOS). 
Increased amounts of nitric oxide promote vasodilation, thereby increasing blood flow, tissue 
oxygenation and blood-based antioxidative stress defense [39, 40]. In addition, epinephrine 



increases plasma CRP in a dose-dependent manner, probably via a receptor mechanism [41, 
42].  

Norepinephrine is an agonist of α and β-1 adrenergic receptors mediating vasoconstriction. 
Sympathetic nervous system (SNS) activation leads to norepinephrine spillover from 
sympathetic nerve terminals and from adrenal medullary cells. Norepinephrine exerts positive 
inotropic and chronotropic effects on the heart as well as increased peripheral vascular 
resistance, thereby increasing blood pressure. However, increases in blood pressure may 
attenuate chronotropy via a baroreflex mechanism. On the level of adipocytes, norepinephrine 
mediates body-temperature increasing effects [43]. Norepinephrine also increases oxidative 
stress [44].  

Interventions aimed at reducing renal sympathetic activity have been evaluated for chronic 
treatment of several cardiovascular diseases.  Denervation of the renal sympathetic nerves is a 
novel treatment strategy for reducing blood pressure in individuals with resistant hypertension 
[45]. The Symplicity HTN-2 Study was a randomized controlled trial which demonstrated renal 
denervation (RDN) to be superior to medical management for office blood pressure control 
measured at 6 months (32/12 mmHg reduction in RDN group versus 1/0mmHg in medical 
therapy group) [46].  In addition to reductions in blood pressure, RDN denervation was 
associated with significant reductions in levels of pro-inflammatory cytokines CRP and IL-6 [47]. 
RDN in addition to pulmonary vein isolation may also reduce the recurrence of atrial fibrillation 
[48]. However, the long-term efficacy of this procedure is unknown.  The Symplicity HTN-3 
Study was the first prospective, multi-center study to evaluate RDN therapy in 535 resistant 
hypertensive patients from 88 centers in the US [49].  This study failed to demonstrate a 
significant reduction of office systolic blood pressure or 24-hour ambulatory blood pressure 
compared to sham controls.   The debate over the effectiveness of this procedure continues and 
there are ongoing clinical trials evaluating several disease outcomes using this technique.  
Additionally, new procedures such as implantation of carotid sinus stimulators are being 
evaluated for treatment of resistant hypertension [50] and heart failure [51].   

It has been shown that in T2DM there is an activation of sympathetic system [52]. Furthermore, 
insulin resistance improves following renal denervation for the treatment of resistant 
hypertension [53-55].  The effect of renal sympathetic denervation was evaluated in a sub-study 
of the Symplicity HTN-2 trial in 37 patients and 13 controls. Three months after renal 
denervation, fasting glucose, insulin, C-peptide levels and HbA1c were significantly reduced. 
Oral glucose tolerance and the sensitivity to insulin measured by the HOMA-IR (homeostasis 
model assessment-insulin resistance) were improved as well [46]. Further research is needed to 
elucidate the mechanism by which sympathetic activation promotes insulin resistance. 

 NATRIURETIC PEPTIDES 

The natriuretic peptides have several important physiologic effects which benefit the heart, 
vasculature, and kidneys to maintain cardiovascular homeostasis. This peptide system is a 
family of at least 3 members: atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), 



and C-type natriuretic peptide (CNP) that exert local and humoral effects on blood pressure and 
extracellular body-fluid volume via vasodilation and natriuresis [56]. BNP is a key cardiovascular 
peptide hormone that is derived mainly from the left ventricle upon increased wall stress [57]. 
BNP binds to Natriuretic Peptide Receptors (NPR A–C) evoking an intracellular increase of 
cyclic guanosine monophosphate (cGMP), a second messenger that is shared by substances 
like nitric oxide. NPR´s are found in vascular smooth muscle cells, endothelial cells, heart, 
adrenal gland, and in the kidney. Cleavage of BNP is widely maintained by neutral 
endopeptidases.  BNP release is more pronounced in acute heart failure [58], and acute 
myocardial infarction [59]. For differentiating causes of dyspnea, BNP measurement was shown 
to be beneficial in the emergency setting [60]. In CHF, therapy may be optimized by serial BNP 
measurements aiming for the lowest level possible [61, 62]. Although BNP lowers blood 
pressure due to less systemic vascular resistance and cardiac filling pressures, no reflex 
increase of sympathetic activation occurs with resulting increases of heart rate. This is 
explained by a BNP-induced resetting of the baroreflex, by an antisympathetic mechanism, or 
both [63]. 
 
BNP promotes peripheral arteriolar vasodilation dose–dependently, thereby reducing cardiac 
filling pressures [64]. BNP antagonizes aldosterone [65] and blunts renin-angiotensin-
aldosterone activation following furosemide in heart failure [66]. Plasma BNP can be a useful 
diagnostic tool in heart failure and can correlate with the NYHA class of dyspnea in CHF [67]. 
 
Nesiritide, a recombinant form of BNP, is approved for the treatment of acute heart failure.  
However, it has not been recommended for routine use in treatment of acute heart failure 
exacerbations, based on randomized controlled trial data demonstrating no difference in the rate 
of death or rehospitalization with nesiritide compared with placebo and its association with an 
increased risk of hypotension [68]  Recently, inhibition of the neutral endopeptidase, neprilysin, 
in combination with the ARB (valsartan) was demonstrated to reduce the risk of death and 
hospitalization in patients with class II-IV CHF compared to patients on valsartan alone [69].  
This may be related to beneficial effects of inhibiting neprilysin, subsequently preventing 
degradation of beneficial vasoactive peptides such as BNP and bradykinin which counter 
vasoconstriction, sodium retention and adverse myocardial remodeling in CHF.   

RENIN-ANGIOTENSIN SYSTEM  

Renin, an aspartyl protease synthesized by the precursor molecule (pro) renin, is able to cleave 
angiotensinogen to form angiotensin I at the origin of the angiotensin peptide cascade. Renin is 
released from renal juxtaglomerular cells into the circulation by SNS activation (via β-1 receptor 
agonism), dopamine, and low sodium concentrations. In addition, renin expression is inhibited 
by vitamin-D receptor activation [70]. Besides catalyzing angiotensin I formation, both (pro) 
renin and renin exert biological effects via receptors within the kidneys, and a mitogen activated 
protein-kinase (MAPK) pathway [71]. 

Direct renin inhibition with Aliskiren has been evaluated as a therapy for hypertension and in 
CHF.  Treatment with ACEIs results in increased plasma renin activity potentially increasing 



angiotensin II production via non-ACE pathways.  Theoretically, direct inhibition of renin would 
inhibit cleavage of angiotensinogen to form angiotensin I, the rate-limiting step in the RAAS.  
This would ultimately blunt the increase in renin release observed with blockade of angiotensin 
II with ACEIs or ARBs allowing for more complete blockade of the RAAS.  In addition to ACEIs 
or ARBs, more comprehensive RAAS blockade can be achieved that allows for a more effective 
attenuation of proteinuria in chronic renal insufficiency both in an animal model [60] and in 
T2DM patients [72]. As one underlying reason, direct renin inhibition preserves renal podocyte 
function in T2DM [73]. While Aliskiren has been shown to lower blood pressure and reduce left 
ventricular hypertrophy, studies of its effectiveness in patients with CHF have demonstrated 
conflicting results [74-76].   

Angiotensin II is a powerful vasoconstricting octapeptide cleaved from angiotensin I by ACE-1. 
Neutral endopeptidases favor the formation of angiotensin 1-7 and angiotensin 1-5. Both 
molecules exert ACE inhibition. In addition, angiotensin 1-7 mediates vasodilation through a 
receptor mechanism counteracting vasoconstriction mediated by angiotensin II [77, 78]. 
Angiotensin II has been linked to cardiac hypertrophy and fibrosis. Thus inhibiting substrate 
formation or directly blocking its receptor, the angiotensin II type 1 receptor, has become a 
hallmark of treatment in cardiovascular medicine.  Angiotensin II effects including increased 
plasma CRP levels may be due to local activation of endothelin [79]. Angiotensin increases 
oxidative stress [44]. Central angiotensin II is considered to be a potent activator of the SNS 
[80]. 

Besides hypertension, blockade of angiotensin II either with ACEIs or ARBs, has become a 
corner-stone therapy in CHF, CAD, diabetes mellitus, and in CKD.  In CKD, both ACEI and ARB 
monotherapy were demonstrated to be beneficial in the “Ongoing Telmisartan Alone and in 
Combination with Ramipril Global Endpoint Trial“(ONTARGET). However, combination therapy 
with ACEI and ARB were not superior to either monotherapy in CKD patients without proteinuria 
of more than 1 g per day [81]. 

ALDOSTERONE  

Aldosterone is the major human mineralocorticoid produced in the adrenal cortex. In certain 
conditions, it may also be locally released in both heart and vasculature [82, 83] affecting 
myocytes in a paracrine way.  
 
The adrenal secretion of aldosterone is stimulated mainly by angiotensin II, by potassium and, 
less potently, by corticotropin. An increase in serum potassium by 0.1mmol/L can elevate 
aldosterone by 35%, whereas a fall in serum potassium of 0.3 mmol/L can reduce plasma 
aldosterone by 46% [84, 85]. Chronically increased plasma corticotropin concentrations as in 
patients with congestive heart failure, may increase aldosterone secretion [86]. Aldosterone 
increases blood pressure via increased sodium reabsorption. ANP, BNP, and dopamine inhibit 
aldosterone secretion. 
  
Aldosterone binds to the cytoplasmic and transmembrane mineralocorticoid receptor inducing 



both genomic and non-genomic actions in targets like endothelial cells, vascular smooth muscle 
cells, the kidney, colon, salivary glands, heart, and the brain [87]. Novel nonepithelial effects of 
aldosterone are mediated via a second messenger system which involves activation of the 
sodium/hydrogen antiporter [88]. Aldosterone regulates renal tubular sodium absorption and 
transcription of sodium-potassium ATPase. After a few days of extracellular fluid expansion by 
increased aldosterone levels, the individual is protected from continuous fluid expansion through 
an “escape” mechanism which denotes attaining a new sodium balance and the formation of a 
new steady state. Aldosterone-mediated effects include increased oxidative stress, apoptosis, 
cardiac fibrosis, as well as left-ventricular hypertrophy [89]. CRP is not affected by 
mineralocorticoid-receptor blockade [90]. 
 
Randomized clinical trials demonstrated aldosterone to play an important role in CHF. In 
RALES, treatment with the aldosterone antagonist spironolactone was shown to reduce 
mortality by 30% without affecting blood pressure in patients with NYHA class III and IV [7]. 
Similar positive outcome effects have been observed with eplerenone supplementation of 
standard therapy in patients with systolic heart failure and mild symptoms (NYHA class II) [9]. 
Likewise, for post-myocardial-infarction heart failure patients in EPHESUS, the more specific 
aldosterone antagonist eplerenone reduced total mortality by 26% [8]. In both studies, the CHF 
patients were receiving otherwise optimal medications including aspirin, statin, beta-blocker, 
ACEIs or ARBs as well as a reperfusion strategy within 14 days after the index acute coronary 
event in EPHESUS. Hypothetically, mineralocorticoid-receptor blockade helps prevent cardiac 
sudden death either by elevating potassium concentrations, thereby reducing the risk for 
incessant ventricular arrhythmias, or via direct effects on cardiac remodeling. Of note, 
mineralocorticoid receptor blockade had been shown to be efficacious in clinical trials in patients 
with hypertension and heart failure in spite of low/low normal plasma aldosterone [91].  

ENDOTHELIN  

The vasculature, namely the endothelium, is able to release the vasoconstrictor endothelin-1, 
thus determining vascular tone along with endothelial vasodilators such as nitric oxide, 
hyperpolarizing factor, and prostacyclin. Endothelin-1 (ET-1) is the most widely distributed 
member of the endothelin family (Figure 4).  ET-1 generation depends on endopeptidase and 
endothelin converting enzyme (ECE) activity. Neutral endopeptidases also catalyze the 
generation of the vasodilator Angiotensin 1-7 as well as the cleavage of BNP, whereas ECE is 
activated by angiotensin II, thus demonstrating the close relationship between these 
vasoconstrictors. In addition to vasoconstriction,  ET-1 is sympatho-excitatory in the central 
nervous system [92]. Moreover, ET-1 supports angiotensin 2-induced aldosterone activation 
[93]. Finally, endothelin-1 promotes interleukin-6 and CRP activation [94]. 
 
Figure 4. Regulation of Endothelin-1 synthesis, consequences of endothelin. (Solid 
arrow: stimulation, non-solid arrow: inhibition.) 



 
Figure 4. Regulation of Endothelin-1 synthesis, consequences of endothelin. (Solid 
arrow: stimulation, non-solid arrow: inhibition.) 
 
 
 

SEX HORMONES  

Acknowledging that gender differences in longevity and in the onset of cardiovascular disease 
may be due to sex hormone differences, hormone replacement therapy has been considered 
one option for women with early menopause either naturally occurring or surgically induced. In 
hysterectomized women estrogen therapy has been demonstrated to be more favorable in 
terms of lipid state than combined estrogen/progestin hormone substitution. However, estrogen 
therapy increased CRP as shown in the PEPI trial [95]. No effect has been found with regard to 
hemodynamics at rest [96]. Randomized clinical trials with postmenopausal women using either 
a combined hormone replacement therapy or unopposed estrogen replacement therapy both for 
secondary [97] and for primary [98] prevention of myocardial infarction were stopped 
prematurely due to the worse outcome in the treatment groups. However, the estrogen-alone 
hormone-replacement-therapy arm of the Women Health Initiative (hysterectomized women) 
showed promising data [99]. One of the theories behind the lack of protective effect of estrogen 



was timing of hormonal replacement.  The average age in women in the WHI was 62 years, 
while the average menopause age in the U.S. is 51 years. Recently, the KEEPS study, where 
estradiol patches were administrated to postmenopausal women from the beginning of 
menopause, failed to show improvement in endothelial function compared to placebo [100]. At 
present, current guidelines restricting hormone replacement therapy to moderate or severe 
postmenopausal symptoms, will not be extended to primary or secondary cardiovascular 
protection [101]. More research is needed to elucidate the discrepancy observed with estrogen 
replacement between observational and randomized trials. 
 
Testosterone can be converted peripherally and in fatty tissue to estradiol via aromatase which 
is especially important because of  the current obesity epidemic. Obese men are often found to 
be type 2 diabetics and may concomitantly suffer from testosterone deficiency syndrome [102, 
103].  As with many things, it is hard to find Aristotle’s middle, i.e. which testosterone level 
would be best for each individual patient.  Testosterone replacement use has dramatically 
increased among men in the last few years [104].  Although testosterone exhibits many 
beneficial metabolic effect and as well increases in muscle strength. A clinical trial in which 
testosterone was given to elderly man was stopped early due to higher incidence of 
cardiovascular diseases [105].  A recent retrospective study by Vigen et al. showed that 
testosterone replacement in men with many comorbidities including CAD (more than 80%), prior 
myocardial infarction (20%), diabetes mellitus (50%), and others, was associated with increases 
in all cause-mortality [106]. These studies had major flaws [107]. Elucidating the mechanism(s) 
by which testosterone promotes cardiovascular diseases in some patients will shed light on 
advancing our understanding of the complex actions of testosterone in nonreproductive organs 
and exploit the beneficial effects of testosterone while avoiding its undesirable cardiovascular 
side effects. Of note, some mechanisms contributing to thrombosis have been reported by 
Virchow as the triad: hypercoagulability, hemodynamic changes (stasis, turbulence), and 
endothelial dysfunction/injury. Testosterone replacement therapy can increase blood viscosity. 
On the other hand, even if platelet counts are very low (which may not reflect  platelet 
functionality), one can still develop a myocardial infarction [108], underscoring that in each 
individual patient with various comorbidities, one or more mechanism/s of thrombosis may be in 
effect.  Similarly, both growth hormone excess and growth hormone deficiency may put 
individuals having either of these conditions at a higher cardiovascular risk [109]. 
 
VASOPRESSIN 
Vasopressin, sometimes called antidiuretic hormone, is a hormone produced in the 
paraventricular and supraoptic nuclei of the hypothalamus and released by the posterior 
pituitary. It has powerful effects to regulate plasma osmolality.   Vasopressin is also one of the 
most potent vasoconstrictors in the body,  acting via activation of V1 receptors located on 
vascular smooth muscle cells.  Vasopressin’s main function is to maintain plasma osmolality by 
increasing the permeability of the renal collecting tubules and collecting ducts to water, 
increasing body fluid volume [110].  Vasopressin is stimulated by hyperosmolality, hypovolemia, 
and hypotension.  Vasopressin, due to its powerful vasoconstrictor action, has been used 
successfully in the setting of septic shock [111].   



ADIPOKINES 

Adipose tissue is now recognized as a biologically active hormonal system which interacts with 
both the brain and heart.  Adipokines can exert either pro- or anti-inflammatory effects. Tumor 
necrosis factor α (TNF-α) is the classic pro-inflammatory cytokine and it has been associated 
with obesity and the metabolic syndrome [112, 113].  TNF-α levels predict the risk of coronary 
artery disease and heart failure and increased circulating levels are associated with mortality 
[114, 115].  One of the adipokines that is felt to be anti-inflammatory and therefore potentially 
beneficial is adiponectin.  Adiponectin inhibits nuclear factor k-β activity after treatment with 
TNF-α, promotes M2 macrophage polarization, and increases clearance of apoptotic cells, thus 
exhibiting multiple anti-inflammatory effects [116-118].  Although adiponectin is produced by 
adipose tissue, there is an inverse relationship of its plasma levels and BMI in humans.  Low 
plasma levels of adiponectin are associated with obesity, diabetes, and coronary artery disease 
and the risk for myocardial infarction and increased levels are associated with reduced 
cardiovascular risk.  

Leptin is a hormone secreted by adipose tissue that has powerful effects to regulate body 
weight by reducing appetite and increasing metabolic activity via activation of the SNS.  Leptin 
appears to prevent lipotoxic injury to the heart by increasing fatty acid oxidation [119, 120].  
Stimulation of myocardial fatty acid oxidation and increased myocardial glucose utilization are 
proposed beneficial effects of leptin in settings of myocardial distress such as myocardial 
infarction or CHF [121].  Studies in rodent models have demonstrated that leptin’s beneficial 
metabolic effects may be mediated by augmented AMP-kinase activity [122, 123].  Leptin levels 
are elevated in patients with acute systolic heart failure. Animal studies have demonstrated that 
cardiac-specific deletion of the leptin receptor exacerbates myocardial injury in experimental 
myocardial infarction and worsened heart failure in cardiotoxic states [122, 123].   

Summary  

Cardiovascular hormones play an important role in homeostatic processes in the healthy 
organism and have become therapeutic targets in clinical syndromes such as CHF, coronary 
artery disease, CKD, or T2DM.  Each of these clinical syndromes is characterized by specific 
states of neurohumoral stimulation arising from attempts to counteract pathophysiologic 
dysregulations. In everyday medicine, combinations of the aforementioned clinical 
entities/syndromes are often encountered. Even though therapies targeting hormone effects 
may not cure the underlying disease, exaggerated hemodynamic and non-hemodynamic 
hormone effects may be attenuated, thereby improving prognosis and/or quality of life. 
Non-hemodynamic consequences of states of neurohumoral stimulation like inflammation and 
oxidative stress contribute to cardiac fibrosis and left ventricular hypertrophy. This, in turn, may 
lead to electrical instability and susceptibility for possibly life-threatening cardiac arrhythmias.  
Neurohumoral blockade may primarily achieve a more stable and economic cell metabolism by 
changes in oxygen demand, in prevalent oxidative stress and inflammation. This, in turn, may 
slow down disease evolution. However, the exact state of neurohumoral stimulation depends 
greatly on the underlying pathology.     For both CKD [11] and CHF [124], neurohumoral 



activation may represent a final common pathophysiologic pathway. Therapies designed to 
attenuate neurohumoral activation in CHF actually counteract a vicious cycle, because the 
consequences of neurohumoral stimulation include increased oxidative stress, that in turn may 
aggravate neurohumoral stimulation [125].  Hormonal mechanisms promoting chronic 
inflammation [126] and oxidative stress [127] are involved in coronary artery disease 
progression 
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